CUDA性能优化

CUDA 性能优化:让 GPU 飞起来的秘密

如果说大模型是一辆超级跑车,那么 CUDA 优化就是让这辆跑车发挥极致性能的调校技术。今天,我们用通俗易懂的方式,来揭秘如何让 GPU 跑得更快。

什么是 CUDA?

CUDA(Compute Unified Device Architecture)是 NVIDIA 推出的并行计算平台和编程模型。简单说,它是让我们能够在 GPU 上写程序的”语言”和”工具箱”。

为什么 GPU 这么重要?

对比 CPU GPU
核心数 8-64 个强力核心 数千个小核心
擅长 复杂逻辑、串行任务 大规模并行计算
类比 一个数学教授 一万个小学生

计算 1+1=? 一个教授秒答。但要计算一亿道加法题?一万个小学生同时做,比一个教授快多了!

深度学习中的矩阵运算正是这种”大量简单计算”的典型场景,所以 GPU 成了 AI 的主力。

为什么需要 CUDA 优化?

“GPU 核心多不就够了吗?”——并不是。

没有优化的 GPU 程序,就像:

  • 雇了一万个员工,但只有 1000 人在干活,其他人在摸鱼
  • 买了 8 车道高速公路,但大家都挤在一条道上
  • 请了顶级厨师,但食材供应跟不上

CUDA 优化的目标: 让每个 GPU 核心都忙起来,让数据流转无阻塞。

CUDA 优化的核心概念

1. 理解 GPU 架构

GPU 由多层结构组成:

1
2
3
4
5
6
7
8
GPU
├── SM (Streaming Multiprocessor) × N ← 多个流处理器
│ ├── CUDA Core × M ← 计算核心
│ ├── Shared Memory ← 共享内存(很快)
│ ├── L1 Cache ← 一级缓存
│ └── Registers ← 寄存器(最快)
├── L2 Cache ← 二级缓存
└── Global Memory (HBM) ← 显存(大但慢)

关键洞察: 数据离计算核心越近,访问越快。优化的核心就是尽量让数据待在”快”的地方。

2. 内存层级与访问速度

内存类型 大小 速度 作用域
寄存器 KB级 最快 单个线程
共享内存 几十KB 非常快 同一线程块
L1/L2 Cache MB级 自动管理
全局内存 (HBM) GB级 慢(相对) 所有线程

类比:

  • 寄存器 = 你手上拿着的笔(秒取)
  • 共享内存 = 你桌上的文具盒(抬手就到)
  • L2 Cache = 你身后的书架(转身取)
  • 全局内存 = 图书馆仓库(要走一趟)

核心优化技术

1. 内存合并访问(Memory Coalescing)

GPU 一次读取内存是按”块”读的(128 字节)。如果多个线程访问的数据正好在一块里,一次就能全读出来。

反例(低效):

1
2
3
4
线程0 访问 地址 0
线程1 访问 地址 1000
线程2 访问 地址 2000
→ 需要 3 次内存访问

正例(高效):

1
2
3
4
线程0 访问 地址 0
线程1 访问 地址 4
线程2 访问 地址 8
→ 1 次内存访问搞定

优化方法: 让相邻线程访问相邻内存地址。

2. 使用共享内存(Shared Memory)

对于需要多次访问的数据,先从全局内存加载到共享内存,再重复使用:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
__global__ void matmul_optimized(float* A, float* B, float* C) {
__shared__ float tile_A[TILE_SIZE][TILE_SIZE];
__shared__ float tile_B[TILE_SIZE][TILE_SIZE];

// 1. 把数据块加载到共享内存
tile_A[ty][tx] = A[row * N + tx];
tile_B[ty][tx] = B[ty * N + col];
__syncthreads(); // 等待所有线程加载完成

// 2. 在共享内存中计算(快!)
for (int k = 0; k < TILE_SIZE; k++) {
sum += tile_A[ty][k] * tile_B[k][tx];
}
}

效果: 减少对慢速全局内存的访问次数。

3. 避免 Bank Conflict(存储体冲突)

共享内存被分成 32 个 Bank。如果多个线程同时访问同一个 Bank 的不同地址,就会产生冲突,被迫串行执行。

类比: 32 个人同时去 32 个不同的 ATM 取钱 = 没冲突。32 个人抢 1 台 ATM = 排队等死。

解决方法: 合理设计数据布局,让线程访问分散到不同 Bank。

4. 优化线程配置

线程组织成三层结构:

  • Thread(线程): 最小执行单位
  • Block(线程块): 一组线程,共享共享内存
  • Grid(网格): 所有线程块的集合

优化要点:

  • 每个 Block 的线程数应是 32 的倍数(Warp 大小)
  • 通常选择 128 或 256 线程每 Block
  • 确保有足够的 Block 数让 GPU 所有 SM 都有活干

5. 指令级优化

使用快速数学函数:

1
2
3
4
5
// 慢
float result = sin(x);

// 快(精度略低但够用)
float result = __sinf(x);

利用 Tensor Core(张量核心):
现代 NVIDIA GPU 有专门的 Tensor Core 做矩阵运算,比普通 CUDA Core 快得多:

1
2
// 使用 Tensor Core 的矩阵乘法
wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);

实战:矩阵乘法优化对比

1
2
3
4
5
6
7
优化阶段              | 性能 (相对)
---------------------|------------
朴素实现 | 1x
+ 内存合并访问 | 3x
+ 共享内存 tiling | 10x
+ 避免 bank conflict | 12x
+ Tensor Core | 50x+

性能分析工具

优化离不开测量。NVIDIA 提供了强大的分析工具:

工具 用途
nsys 系统级分析,查看整体执行情况
ncu Kernel 级分析,深入分析单个函数
nvprof 传统分析工具

使用示例:

1
2
3
4
5
## 分析程序整体性能
nsys profile ./my_cuda_program

## 深入分析某个 kernel
ncu --set full ./my_cuda_program

常见优化清单

优化项 检查点
内存合并 相邻线程是否访问相邻地址?
占用率 GPU SM 是否充分利用?
共享内存 是否用共享内存减少全局访问?
Bank Conflict 共享内存访问是否有冲突?
分支发散 同一 Warp 内是否有不同分支?
指令吞吐 是否使用了高效指令?

在 AI 框架中的应用

PyTorch、TensorFlow 等框架底层大量使用优化过的 CUDA Kernel:

  • cuBLAS: 矩阵运算库
  • cuDNN: 深度学习原语库
  • Flash Attention: 优化的注意力机制实现

当你调用 torch.matmul() 时,背后是无数工程师精心优化的 CUDA 代码在工作。

总结

CUDA 性能优化是让 GPU 发挥真正实力的关键技术。核心思想包括:

  1. 减少内存访问: 内存是瓶颈,尽量复用数据
  2. 利用内存层级: 把热数据放到更快的存储层
  3. 保持并行度: 让所有计算单元都忙起来
  4. 使用专用硬件: Tensor Core 等加速单元

掌握这些技术,你就掌握了让 AI 模型”飞”起来的魔法。

CUDA Performance Optimization: The Secret to Making GPUs Fly

If large models are a supercar, then CUDA optimization is the tuning technique that unleashes the car’s ultimate performance. Today, we’ll reveal how to make GPUs run faster in an easy-to-understand way.

What is CUDA?

CUDA (Compute Unified Device Architecture) is NVIDIA’s parallel computing platform and programming model. Simply put, it’s the “language” and “toolbox” that allows us to write programs on GPUs.

Why are GPUs so important?

Comparison CPU GPU
Core Count 8-64 powerful cores Thousands of small cores
Good at Complex logic, serial tasks Massive parallel computing
Analogy One math professor Ten thousand elementary students

Computing 1+1=? A professor answers instantly. But computing a hundred million addition problems? Ten thousand students working simultaneously is much faster than one professor!

Matrix operations in deep learning are exactly this type of “massive simple computations” scenario, which is why GPUs became the workhorse of AI.

Why Do We Need CUDA Optimization?

“Isn’t having lots of GPU cores enough?”—Not really.

An unoptimized GPU program is like:

  • Hiring ten thousand employees, but only 1000 are working while others are slacking
  • Buying an 8-lane highway, but everyone’s crammed into one lane
  • Hiring a top chef, but ingredient supply can’t keep up

The goal of CUDA optimization: Keep every GPU core busy, and let data flow without blockages.

Core Concepts of CUDA Optimization

1. Understanding GPU Architecture

GPUs have a multi-layered structure:

1
2
3
4
5
6
7
8
GPU
├── SM (Streaming Multiprocessor) × N ← Multiple streaming processors
│ ├── CUDA Core × M ← Compute cores
│ ├── Shared Memory ← Shared memory (very fast)
│ ├── L1 Cache ← Level 1 cache
│ └── Registers ← Registers (fastest)
├── L2 Cache ← Level 2 cache
└── Global Memory (HBM) ← Video memory (large but slow)

Key insight: The closer data is to compute cores, the faster the access. The core of optimization is keeping data in “fast” places as much as possible.

2. Memory Hierarchy and Access Speed

Memory Type Size Speed Scope
Registers KB level Fastest Single thread
Shared Memory Tens of KB Very fast Same thread block
L1/L2 Cache MB level Fast Auto-managed
Global Memory (HBM) GB level Slow (relatively) All threads

Analogy:

  • Registers = Pen in your hand (instant)
  • Shared Memory = Pencil case on your desk (reach over)
  • L2 Cache = Bookshelf behind you (turn around)
  • Global Memory = Library warehouse (need to walk there)

Core Optimization Techniques

1. Memory Coalescing

GPU reads memory in “chunks” (128 bytes). If multiple threads access data that happens to be in one chunk, it can all be read at once.

Bad example (inefficient):

1
2
3
4
Thread 0 accesses address 0
Thread 1 accesses address 1000
Thread 2 accesses address 2000
→ Requires 3 memory accesses

Good example (efficient):

1
2
3
4
Thread 0 accesses address 0
Thread 1 accesses address 4
Thread 2 accesses address 8
→ 1 memory access handles all

Optimization method: Have adjacent threads access adjacent memory addresses.

2. Using Shared Memory

For data that needs to be accessed multiple times, first load from global memory to shared memory, then reuse:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
__global__ void matmul_optimized(float* A, float* B, float* C) {
__shared__ float tile_A[TILE_SIZE][TILE_SIZE];
__shared__ float tile_B[TILE_SIZE][TILE_SIZE];

// 1. Load data blocks to shared memory
tile_A[ty][tx] = A[row * N + tx];
tile_B[ty][tx] = B[ty * N + col];
__syncthreads(); // Wait for all threads to finish loading

// 2. Compute in shared memory (fast!)
for (int k = 0; k < TILE_SIZE; k++) {
sum += tile_A[ty][k] * tile_B[k][tx];
}
}

Effect: Reduces accesses to slow global memory.

3. Avoiding Bank Conflicts

Shared memory is divided into 32 banks. If multiple threads simultaneously access different addresses in the same bank, conflicts occur and execution becomes serial.

Analogy: 32 people going to 32 different ATMs simultaneously = no conflict. 32 people fighting for 1 ATM = waiting in line forever.

Solution: Design data layout carefully so thread accesses are distributed across different banks.

4. Optimizing Thread Configuration

Threads are organized in three levels:

  • Thread: Smallest execution unit
  • Block: A group of threads sharing shared memory
  • Grid: Collection of all thread blocks

Optimization points:

  • Threads per block should be multiples of 32 (Warp size)
  • Usually choose 128 or 256 threads per block
  • Ensure enough blocks so all GPU SMs have work to do

5. Instruction-level Optimization

Use fast math functions:

1
2
3
4
5
// Slow
float result = sin(x);

// Fast (slightly less precise but sufficient)
float result = __sinf(x);

Leverage Tensor Cores:
Modern NVIDIA GPUs have dedicated Tensor Cores for matrix operations, much faster than regular CUDA Cores:

1
2
// Matrix multiplication using Tensor Core
wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);

Practical: Matrix Multiplication Optimization Comparison

1
2
3
4
5
6
7
Optimization Stage       | Performance (relative)
------------------------|----------------------
Naive implementation | 1x
+ Memory coalescing | 3x
+ Shared memory tiling | 10x
+ Avoid bank conflict | 12x
+ Tensor Core | 50x+

Performance Analysis Tools

Optimization requires measurement. NVIDIA provides powerful analysis tools:

Tool Purpose
nsys System-level profiling, view overall execution
ncu Kernel-level profiling, deep analysis of individual functions
nvprof Traditional profiling tool

Usage example:

1
2
3
4
5
## Profile overall program performance
nsys profile ./my_cuda_program

## Deep analysis of a specific kernel
ncu --set full ./my_cuda_program

Common Optimization Checklist

Optimization Checkpoint
Memory Coalescing Do adjacent threads access adjacent addresses?
Occupancy Are GPU SMs fully utilized?
Shared Memory Using shared memory to reduce global access?
Bank Conflict Any conflicts in shared memory access?
Branch Divergence Different branches within same Warp?
Instruction Throughput Using efficient instructions?

Application in AI Frameworks

Frameworks like PyTorch and TensorFlow extensively use optimized CUDA kernels under the hood:

  • cuBLAS: Matrix operation library
  • cuDNN: Deep learning primitives library
  • Flash Attention: Optimized attention mechanism implementation

When you call torch.matmul(), countless engineer-optimized CUDA code is working behind the scenes.

Summary

CUDA performance optimization is the key technology to unleash GPU’s true power. Core ideas include:

  1. Reduce memory access: Memory is the bottleneck, reuse data as much as possible
  2. Utilize memory hierarchy: Put hot data in faster storage layers
  3. Maintain parallelism: Keep all compute units busy
  4. Use specialized hardware: Tensor Cores and other acceleration units

Master these techniques, and you’ll master the magic of making AI models “fly.”